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Phonon and Specific Heat Analyses in Rare-Earth Hexaborides
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Systematic analyses of the speci5c heat of rare-earth hexabor-
ides are presented using phonon data. Similarity of phonon
dispersion curves at lower frequency is found for the rare-earth
hexaborides. By this fact, it becomes possible to deduce unknown
phonon dispersion curves. We can calculate the phonon speci5c
heat precisely using phonon dispersion curves. Magnetic entropy
is derived for GdB6, TbB6, DyB6, and HoB6, indicating their
magnetic ground states which are consistent with a point-charge
model developed by K. R. Lea et al. (1962, J. Phys. Chem. Solids
23, 1381). ( 2000 Academic Press

INTRODUCTION

Rare-earth hexaborides with a simple cubic CaB
6
-type

structure have been attracting much attention because of
their variety of electronic and magnetic properties (1}3).
There have been few studies on heavy rare-earth (Tb, Dy,
and Ho) hexaborides, one of the reasons for this being
that their incongruent melting property makes it di$cult
to grow a large single crystal. We have succeeded in
growing such large single crystals by a crucible-free #oating
zone method. The speci"c heat data of TbB

6
, DyB

6
,

and HoB
6

have already been reported by us (4). However,
the magnetic entropy has not yet been obtained. Because
the speci"c heat of LaB

6
for the phonon standard in

the rare-earth hexaboride series is too small at low temper-
ature to subtract the phonon part for the above compounds,
their magnetic entropy exceeds the theoretical maximum
value.

We have developed a new method of speci"c heat ana-
lyses using phonon dispersion curves (5, 6). If we know the
phonon dispersion curve, we can calculate the phonon den-
sity of states so as to determine the phonon energy. The
phonon speci"c heat can be calculated precisely as the
temperature derivative of the phonon energy. The purpose
of the present paper is to present systematic analyses of the
speci"c heat of rare-earth hexaborides using phonon data
obtained to date.
27
RESULTS AND DISCUSSION

The phonon dispersion curves obtained by neutron
inelastic scattering experiments have been reported so far
for LaB

6
(7), CeB

6
(6), and SmB

6
(8). The phonon dispersion

curves for the above three compounds are similar, as shown
in Figs. 1a and 1b, in which the phonon frequency is con-
verted to Kelvin for the easy comparison with the speci"c
heat data. The phonon dispersion curves for CeB

6
are

plotted in Fig. 1a by circles. For LaB
6
, shown by ], the

frequency of a vertical line is reduced by a frequency reduc-
ing factor N ("0.985) so as to coincide with that of CeB

6
.

Figure 1b shows the same handling for SmB
6

(L) as for
LaB

6
(]) using N"0.88 for the best coincidence. The

coincidence between L and ] is good in both "gures.
Surprisingly, the frequency reducing factor N obtained
above is the same value as the ratio of the Debye temper-
ature #(CeB

6
or SmB

6
)/#(LaB

6
), which is listed in Table 1.

The Debye temperature is calculated by two methods, that
is, Houston's method (9) and the mean sound velocities'
method (10), using elastic constants C

44
, C

11
, and C

12
ob-

tained by us (11). Two calculation methods give approxim-
ately the same values. The above coincidence means that if
we know the starting slope of the dispersion curve (that is, at
q"0), we may be able to estimate the whole dispersion
curve in rare-earth hexaborides. For example, we do not
know the phonon structure of YbB

6
. However, using the

Debye temperature ratio 0.69 for YbB
6
, we can "t the

speci"c heat of YbB
6

(7) by that of LaB
6

as shown in Fig. 2.
In Table 1, values for A"2C

44
/(C

11
!C

12
) are shown.

Value A is a measure of the elastic anisotropy of the crystal
(9). For heavy rare-earth hexaborides (GdB

6
}HoB

6
), the

deviation of A from the value of LaB
6

is large as shown in
the table. In these cases the Debye temperature obtained
from the elastic constants may be incorrect because of the
assumption of Houston's method (9). Therefore, to correct
the reducing factor N for heavy rare-earth hexaborides, we
have performed neutron inelastic measurements on Dy11B

6
to obtain its dispersion curves (12). It has a shape similar to
that of LaB

6
and yields N"0.58. It can be noticed that the

elastic constant C
44

and the reducing factor N are related
5
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FIG. 1. (a) Phonon dispersion relation for CeB
6

(s) and for LaB
6

(])
in which the frequency is reduced by N"0.985. (b) Phonon dispersion
relation for SmB

6
(s) and for LaB

6
(]) in which the frequency is reduced

by N"0.888.

FIG. 3. Elastic constant C
44

(log scale) versus phonon energy reducing
factor N.
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empirically. In Fig. 3, we plot the relation between C
44

and
N for LaB

6
, CeB

6
, SmB

6
, and DyB

6
. From this "gure, we

can deduce the value of N for GdB
6
, TbB

6
, and HoB

6
. For
FIG. 2. Speci"c heat of YbB
6

(s, measured), solid line for LaB
6
. The

dotted line is obtained from that of LaB
6

using the Debye temperature
ratio 0.69.
GdB
6
, we can solve the long-standing problem of its enor-

mous entropy. Using this N value of 0.69, we can estimate
much larger phonon speci"c heat at lower temperature for
GdB

6
(13), as shown in Fig. 4a. Then we can obtain the

entropy of Rln 8 as is expected theoretically for GdB
6

(4 f"7, 8S
7@2

) which is shown in Fig. 4b.
FIG. 4. (a) Speci"c heat of GdB
6

(s, measured), solid line for LaB
6
.

The dotted line is obtained from that of LaB
6

using reducing factor 0.69.
(b) Magnetic entropy S/R of GdB

6
.



FIG. 5. Speci"c heat C/R/T at low temperature for (a) TbB
6
, (b) DyB

6
,

and (c) HoB
6
. Solid lines are "tted to C"a/¹2#b¹3#c¹#C

.!'
,

where a, b, and c are parameters (see text).

FIG. 6. (a) Speci"c heat of TbB
6

(s, measured), and solid line for
LaB

6
. The dotted line is obtained from that of LaB

6
using reducing factor

0.67. (b) Magnetic entropy S/R of TbB
6
.

ANALYSES IN RARE-EARTH HEXABORIDES 277
In TbB
6
, DyB

6
, and HoB

6
at low temperature, the

increase of the speci"c heat with decreasing temperature can
be observed as shown in Figs. 5a, 5b, and 5c. At low
temperature the speci"c heat increases with decreasing tem-
perature nearly as 1/¹2 dependence expected for the nuclear
Schottky contribution. Therefore, we assume the speci"c
TABLE 1
Elastic Constants C44 , Elastic Anisotropy Factor A, Debye

Temperature H and Its Ratio, and Energy Reducing Factor N

C
44

(erg/cm3)

A

(2C
44

/(C
11
!C

12
))

#
(K)

# (RB
6
)

# (LaB
6
) N

LaB
6

8.3]1011 0.384 396 1 1
CeB

6
7.9]1011 0.356 390 0.985 0.985

SmB
6

6.4]1011 0.287 351 0.888 0.888
YbB

6
4.1]1011 0.270 274 0.69 (0.68)

GdB
6

4.2]1011 0.193 * * (0.69)
TbB

6
4.0]1011 0.180 * * (0.67)

DyB
6

3.3]1011 0.145 * * 0.58
HoB

6
3.2]1011 0.133 * * (0.57)
heat, C"a/¹2#b¹3#c¹#C
.!'

. a is the nuclear
Schottky speci"c heat coe$cient, b is the phonon and the
antiferro spin wave speci"c heat coe$cient which is nearly
two orders of magnitude smaller than the total value in the
present temperature range, and c is the electronic speci"c
heat coe$cient. C

.!'
is the magnetic speci"c heat that we

want to "nally obtain. We attempt to "t the speci"c heat
data by the above formula using a, b, and c as parameters.
The "tting curves are shown by the solid lines in Figs. 5a, 5b,
and 5c. For TbB

6
, a"262 mJ )K/mol, b"3.2 mJ/mol )K4,

and c"49.9 mJ/mol )K2. For DyB
6
, a"37.9 mJ )K/mol,

b"0.73 mJ/mol )K4, and c"11.5 mJ/mol )K2 . For HoB
6
,

a"4530 mJ )K/mol, b"87.9 mJ/mol )K4 , and c"207 mJ/
mol )K2. The a values obtained above do not deviate from
that of rare-earth metals of Tb, Dy, and Ho (14). After the
above correction of the speci"c heat data, phonon correc-
tion is done as described above at higher temperature.
Figures 6a, 7a, and 8a show the phonon correction for



FIG. 7. (a) Speci"c heat of DyB
6

(s, measured), and solid line for
LaB

6
. The dotted line is obtained from that of LaB

6
using reducing factor

0.58. (b) Magnetic entropy S/R of DyB
6
.

FIG. 8. (a) Speci"c heat of HoB
6

(s, measured), solid line for LaB
6
.

The dotted line is obtained from that of LaB
6

using reducing factor 0.57.
(b) Magnetic entropy S/R of TbB

6
.
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TbB
6
, DyB

6
, and HoB

6
, respectively. Figures 6b, 7b, and 8b

show the magnetic entropy. They do not exceed their
expected theoretical entropy values for Tb3` (J"6), Dy3`

(J"15/2), and Ho3` (J"8).
We use the values of C

44
obtained at room temperature in

above analyses. C
44

values at temperatures higher than the
critical point (magnetic or quadrupole transition temper-
ature) for rare-earth hexaborides do not deviate so much
from the room temperature value (11). Moreover phonon
speci"c heat is not important at low temperature, and speci-
"c heat re#ects the causes of energy e at the temperature
¹ so as to e/k¹&3, where k is the Boltzman constant (15).
Therefore, it is possible to use the room temperature values
of C

44
in our analysis.

The magnetic ground states of PrB
6

and NdB
6

have been
determined by the neutron inelastic scattering measure-
ments (16, 17). Their level schemes and their relative split-
tings are consistent with the point charge model by Lea
et al. (18). The level schemes for TbB

6
, DyB

6
, and HoB

6
seem to be in the same situation as above. In TbB

6
, the

entropy is Rln 5 at the magnetic transition temperature seen
in Fig. 6b. The ground state is !
3
(two-fold degeneracy), and

next !
5

(three-fold deg.) from Ref. (18), and consistent with
the entropy at the magnetic transition temperature. In
DyB

6
, the entropy is Rln 4 at the Neel temperature and Rln

8 at the quadrupolar transition temperature. The ground
state is !(1)

8
(four-fold deg.) and !(2)

8
(four-fold deg.), consis-

tent with the entropy. In HoB
6
, the entropy is Rln 3 at the

magnetic transition temperature. The ground state is !(2)
5

(three-fold deg.), also consistent with the entropy. More
detailed calculations and discussions of crystal "eld para-
meters for magnetic rare-earth hexaborides will be
described in a forthcoming paper.

CONCLUSION

We found a similarity of phonon dispersion curves among
the rare-earth hexaborides. Using this fact, we were able to
deduce the phonon structure of all rare-earth hexaborides.
Systematic analyses of the speci"c heat of rare-earth hexa-
borides were performed. Magnetic entropy was derived for
GdB

6
, TbB

6
, DyB

6
, and HoB

6
for the "rst time.
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